home *** CD-ROM | disk | FTP | other *** search
- /****************************************************************************
- * image.c
- *
- * This module implements the mapped textures including image map, bump map
- * and material map.
- *
- * from Persistence of Vision(tm) Ray Tracer
- * Copyright 1996 Persistence of Vision Team
- *---------------------------------------------------------------------------
- * NOTICE: This source code file is provided so that users may experiment
- * with enhancements to POV-Ray and to port the software to platforms other
- * than those supported by the POV-Ray Team. There are strict rules under
- * which you are permitted to use this file. The rules are in the file
- * named POVLEGAL.DOC which should be distributed with this file. If
- * POVLEGAL.DOC is not available or for more info please contact the POV-Ray
- * Team Coordinator by leaving a message in CompuServe's Graphics Developer's
- * Forum. The latest version of POV-Ray may be found there as well.
- *
- * This program is based on the popular DKB raytracer version 2.12.
- * DKBTrace was originally written by David K. Buck.
- * DKBTrace Ver 2.0-2.12 were written by David K. Buck & Aaron A. Collins.
- *
- *****************************************************************************/
-
- #include "frame.h"
- #include "vector.h"
- #include "povproto.h"
- #include "texture.h"
- #include "image.h"
- #include "matrices.h"
- #include "povray.h"
-
-
-
- /*****************************************************************************
- * Local preprocessor defines
- ******************************************************************************/
-
-
-
- /*****************************************************************************
- * Local typedefs
- ******************************************************************************/
-
-
-
- /*****************************************************************************
- * Local variables
- ******************************************************************************/
-
-
-
- /*****************************************************************************
- * Static functions
- ******************************************************************************/
-
- static int cylindrical_image_map PARAMS((VECTOR EPoint, IMAGE * Image, DBL *u, DBL *v));
- static int torus_image_map PARAMS((VECTOR EPoint, IMAGE * Image, DBL *u, DBL *v));
- static int spherical_image_map PARAMS((VECTOR EPoint, IMAGE * Image, DBL *u, DBL *v));
- static int planar_image_map PARAMS((VECTOR EPoint, IMAGE * Image, DBL *u, DBL *v));
- static void no_interpolation PARAMS((IMAGE * Image, DBL xcoor, DBL ycoor, COLOUR colour, int *index));
- static DBL bilinear PARAMS((DBL *corners, DBL x, DBL y));
- static DBL norm_dist PARAMS((DBL *corners, DBL x, DBL y));
- static void Interp PARAMS((IMAGE * Image, DBL xcoor, DBL ycoor, COLOUR colour, int *index));
- static void image_colour_at PARAMS((IMAGE * Image, DBL xcoor, DBL ycoor, COLOUR colour, int *index));
- static int map PARAMS((VECTOR EPoint, TPATTERN * Turb, DBL *xcoor, DBL *ycoor));
-
- /*
- * 2-D to 3-D Procedural Texture Mapping of a Bitmapped Image onto an Object:
- *
- * A. Simplistic (planar) method of image projection devised by DKB and AAC:
- *
- * 1. Transform texture in 3-D space if requested. 2. Determine local object 2-d
- * coords from 3-d coords by <X Y Z> triple. 3. Return pixel color value at
- * that position on the 2-d plane of "Image". 3. Map colour value in Image
- * [0..255] to a more normal colour range [0..1].
- *
- * B. Specialized shape projection variations by Alexander Enzmann:
- *
- * 1. Cylindrical mapping 2. Spherical mapping 3. Torus mapping
- */
-
- /*****************************************************************************
- *
- * FUNCTION
- *
- * image_map
- *
- * INPUT
- *
- * EPoint -- 3-D point at which function is evaluated
- * Pigment -- Pattern containing various parameters
- *
- * OUTPUT
- *
- * Colour -- color at EPoint
- *
- * RETURNS
- *
- * int - TRUE, if current point on the image map
- * FALSE, if current point is not on the image map
- *
- * AUTHOR
- *
- * POV-Ray Team
- *
- * DESCRIPTION : Determines color of a 3-D point from a 2-D bitmap
- *
- * CHANGES
- *
- ******************************************************************************/
-
- int image_map(EPoint, Pigment, colour)
- VECTOR EPoint;
- PIGMENT *Pigment;
- COLOUR colour;
- {
- int reg_number;
- DBL xcoor = 0.0, ycoor = 0.0;
-
- /* If outside map coverage area, return clear */
-
- if (map(EPoint, ((TPATTERN *) Pigment), &xcoor, &ycoor))
- {
- Make_ColourA(colour, 1.0, 1.0, 1.0, 0.0, 1.0);
-
- return(FALSE);
- }
- else
- {
- image_colour_at(Pigment->Vals.Image, xcoor, ycoor, colour, ®_number);
- }
-
- return(TRUE);
- }
-
-
-
- /*****************************************************************************
- *
- * FUNCTION
- *
- * INPUT
- *
- * OUTPUT
- *
- * RETURNS
- *
- * AUTHOR
- *
- * DESCRIPTION
- *
- * Very different stuff than the other routines here. This routine takes an
- * intersection point and a texture and returns a new texture based on the
- * index/color of that point in an image/materials map. CdW 7/91
- *
- * CHANGES
- *
- ******************************************************************************/
-
- TEXTURE *material_map(EPoint, Texture)
- VECTOR EPoint;
- TEXTURE *Texture;
- {
- int reg_number = 0;
- int Material_Number;
- int numtex;
- DBL xcoor = 0.0, ycoor = 0.0;
- COLOUR colour;
- TEXTURE *Temp_Tex;
-
- /*
- * Now we have transformed x, y, z we use image mapping routine to determine
- * texture index.
- */
-
- if (map(EPoint, ((TPATTERN *) Texture), &xcoor, &ycoor))
- {
- Material_Number = 0;
- }
- else
- {
- Make_ColourA(colour, 0.0, 0.0, 0.0, 0.0, 0.0);
-
- image_colour_at(Texture->Vals.Image, xcoor, ycoor, colour, ®_number);
-
- if (Texture->Vals.Image->Colour_Map == NULL)
- {
- Material_Number = (int)(colour[RED] * 255.0);
- }
- else
- {
- Material_Number = reg_number;
- }
- }
-
- if (Material_Number > Texture->Num_Of_Mats)
- {
- Material_Number %= Texture->Num_Of_Mats;
- }
-
- for (numtex = 0, Temp_Tex = Texture->Materials;
- (Temp_Tex->Next_Material != NULL) && (numtex < Material_Number);
- Temp_Tex = Temp_Tex->Next_Material, numtex++)
- {
- /* do nothing */
- }
-
- return (Temp_Tex);
- }
-
-
-
- /*****************************************************************************
- *
- * FUNCTION
- *
- * INPUT
- *
- * OUTPUT
- *
- * RETURNS
- *
- * AUTHOR
- *
- * DESCRIPTION
- *
- * CHANGES
- *
- ******************************************************************************/
-
- void bump_map(EPoint, Tnormal, normal)
- VECTOR EPoint;
- TNORMAL *Tnormal;
- VECTOR normal;
- {
- DBL xcoor = 0.0, ycoor = 0.0;
- int index, index2, index3;
- COLOUR colour1, colour2, colour3;
- VECTOR p1, p2, p3;
- VECTOR bump_normal;
- VECTOR xprime, yprime, zprime, Temp;
- DBL Length;
- DBL Amount = Tnormal->Amount;
- IMAGE *Image = Tnormal->Vals.Image;
-
- Make_ColourA(colour1, 0.0, 0.0, 0.0, 0.0, 0.0);
- Make_ColourA(colour2, 0.0, 0.0, 0.0, 0.0, 0.0);
- Make_ColourA(colour3, 0.0, 0.0, 0.0, 0.0, 0.0);
-
- /* going to have to change this */
- /* need to know if bump point is off of image for all 3 points */
-
- if (map(EPoint, (TPATTERN *) Tnormal, &xcoor, &ycoor))
- {
- return;
- }
- else
- {
- image_colour_at(Image, xcoor, ycoor, colour1, &index);
- }
-
- xcoor--;
- ycoor++;
-
- if (xcoor < 0.0)
- {
- xcoor += (DBL)Image->iwidth;
- }
- else
- {
- if (xcoor >= Image->iwidth)
- {
- xcoor -= (DBL)Image->iwidth;
- }
- }
-
- if (ycoor < 0.0)
- {
- ycoor += (DBL)Image->iheight;
- }
- else
- {
- if (ycoor >= (DBL)Image->iheight)
- {
- ycoor -= (DBL)Image->iheight;
- }
- }
-
- image_colour_at(Image, xcoor, ycoor, colour2, &index2);
-
- xcoor += 2.0;
-
- if (xcoor < 0.0)
- {
- xcoor += (DBL)Image->iwidth;
- }
- else
- {
- if (xcoor >= Image->iwidth)
- {
- xcoor -= (DBL)Image->iwidth;
- }
- }
-
- image_colour_at(Image, xcoor, ycoor, colour3, &index3);
-
- if (Image->Colour_Map == NULL || Image->Use_Colour_Flag)
- {
- p1[X] = 0;
- p1[Y] = Amount * (0.229 * colour1[RED] + 0.587 * colour1[GREEN] + 0.114 * colour1[BLUE]);
- p1[Z] = 0;
-
- p2[X] = 0;
- p2[Y] = Amount * (0.229 * colour2[RED] + 0.587 * colour2[GREEN] + 0.114 * colour2[BLUE]);
- p2[Z] = 1;
-
- p3[X] = 1;
- p3[Y] = Amount * (0.229 * colour3[RED] + 0.587 * colour3[GREEN] + 0.114 * colour3[BLUE]);
- p3[Z] = 1;
- }
- else
- {
- p1[X] = 0;
- p1[Y] = Amount * index;
- p1[Z] = 0;
-
- p2[X] = 0;
- p2[Y] = Amount * index2;
- p2[Z] = 1;
-
- p3[X] = 1;
- p3[Y] = Amount * index3;
- p3[Z] = 1;
- }
-
- /* we have points 1,2,3 for a triangle now we need the surface normal for it */
-
- VSub(xprime, p1, p2);
- VSub(yprime, p3, p2);
- VCross(bump_normal, yprime, xprime);
- VNormalize(bump_normal, bump_normal);
-
- Assign_Vector(yprime, normal);
- Make_Vector(Temp, 0.0, 1.0, 0.0);
- VCross(xprime, yprime, Temp);
- VLength(Length, xprime);
-
- if (Length < EPSILON)
- {
- if (fabs(normal[Y] - 1.0) < Small_Tolerance)
- {
- Make_Vector(yprime, 0.0, 1.0, 0.0);
- Make_Vector(xprime, 1.0, 0.0, 0.0);
- Length = 1.0;
- }
- else
- {
- Make_Vector(yprime, 0.0, -1.0, 0.0);
- Make_Vector(xprime, 1.0, 0.0, 0.0);
- Length = 1.0;
- }
- }
-
- VScaleEq(xprime, 1.0 / Length);
- VCross(zprime, xprime, yprime);
- VNormalizeEq(zprime);
- VScaleEq(xprime, bump_normal[X]);
- VScaleEq(yprime, bump_normal[Y]);
- VScaleEq(zprime, bump_normal[Z]);
- VAdd(Temp, xprime, yprime);
- VAdd(normal, Temp, zprime);
- }
-
-
-
- /*****************************************************************************
- *
- * FUNCTION
- *
- * INPUT
- *
- * OUTPUT
- *
- * RETURNS
- *
- * AUTHOR
- *
- * DESCRIPTION
- *
- * CHANGES
- *
- ******************************************************************************/
-
- static void image_colour_at(Image, xcoor, ycoor, colour, index)
- IMAGE *Image;
- DBL xcoor, ycoor;
- COLOUR colour;
- int *index;
- {
- switch (Image->Interpolation_Type)
- {
- case NO_INTERPOLATION:
-
- no_interpolation(Image, xcoor, ycoor, colour, index);
-
- break;
-
- default:
-
- Interp(Image, xcoor, ycoor, colour, index);
-
- break;
- }
- }
-
-
-
- /*****************************************************************************
- *
- * FUNCTION
- *
- * INPUT
- *
- * OUTPUT
- *
- * RETURNS
- *
- * AUTHOR
- *
- * DESCRIPTION
- *
- * Map a point (x, y, z) on a cylinder of radius 1, height 1, that has its axis
- * of symmetry along the y-axis to the square [0,1]x[0,1].
- *
- * CHANGES
- *
- ******************************************************************************/
-
- static int cylindrical_image_map(EPoint, Image, u, v)
- VECTOR EPoint;
- IMAGE *Image;
- DBL *u, *v;
- {
- DBL len, theta;
- DBL rdiv;
- DBL x = EPoint[X];
- DBL y = EPoint[Y];
- DBL z = EPoint[Z];
-
- if ((Image->Once_Flag) && ((y < 0.0) || (y > 1.0)))
- {
- return 0;
- }
-
- *v = fmod(y * Image->height, Image->height);
-
- /* Make sure this vector is on the unit sphere. */
-
- len = sqrt(x * x + y * y + z * z);
-
- if (len == 0.0)
- {
- return 0;
- }
- else
- {
- rdiv = (1.0 / len);
- x *= rdiv;
- z *= rdiv;
- /*
- x /= len;
- z /= len;
- */
- }
-
- /* Determine its angle from the point (1, 0, 0) in the x-z plane. */
-
- len = sqrt(x * x + z * z);
-
- if (len == 0.0)
- {
- return 0;
- }
- else
- {
- if (z == 0.0)
- {
- if (x > 0)
- {
- theta = 0.0;
- }
- else
- {
- theta = M_PI;
- }
- }
- else
- {
- theta = acos(x / len);
-
- if (z < 0.0)
- {
- theta = 2.0 * M_PI - theta;
- }
- }
-
- theta /= 2.0 * M_PI; /* This will be from 0 to 1 */
- }
-
- *u = (theta * Image->width);
-
- return 1;
- }
-
-
-
- /*****************************************************************************
- *
- * FUNCTION
- *
- * INPUT
- *
- * OUTPUT
- *
- * RETURNS
- *
- * AUTHOR
- *
- * DESCRIPTION
- *
- * Map a point (x, y, z) on a torus to a 2-d image.
- *
- * CHANGES
- *
- ******************************************************************************/
-
- static int torus_image_map(EPoint, Image, u, v)
- VECTOR EPoint;
- IMAGE *Image;
- DBL *u, *v;
- {
- DBL len, phi, theta;
- DBL r0;
- DBL x = EPoint[X];
- DBL y = EPoint[Y];
- DBL z = EPoint[Z];
-
- r0 = Image->Gradient[X];
-
- /* Determine its angle from the x-axis. */
-
- len = sqrt(x * x + z * z);
-
- if (len == 0.0)
- {
- return 0;
- }
- else
- {
- if (z == 0.0)
- {
- if (x > 0)
- {
- theta = 0.0;
- }
- else
- {
- theta = M_PI;
- }
- }
- else
- {
- theta = acos(x / len);
-
- if (z < 0.0)
- {
- theta = 2.0 * M_PI - theta;
- }
- }
- }
-
- theta = 0.0 - theta;
-
- /* Now rotate about the y-axis to get the point (x, y, z) into the x-y plane. */
-
- x = len - r0;
-
- len = sqrt(x * x + y * y);
-
- phi = acos(-x / len);
-
- if (y > 0.0)
- {
- phi = 2.0 * M_PI - phi;
- }
-
- /* Determine the parametric coordinates. */
-
- theta /= 2.0 * M_PI;
-
- phi /= 2.0 * M_PI;
-
- *u = (-theta * Image->width);
-
- *v = (phi * Image->height);
-
- return 1;
- }
-
-
-
- /*****************************************************************************
- *
- * FUNCTION
- *
- * INPUT
- *
- * OUTPUT
- *
- * RETURNS
- *
- * AUTHOR
- *
- * DESCRIPTION
- *
- * Map a point (x, y, z) on a sphere of radius 1 to a 2-d image. (Or is it the
- * other way around?)
- *
- * CHANGES
- *
- ******************************************************************************/
-
- static int spherical_image_map(EPoint, Image, u, v)
- VECTOR EPoint;
- IMAGE *Image;
- DBL *u, *v;
- {
- DBL len, phi, theta;
- DBL x = EPoint[X];
- DBL y = EPoint[Y];
- DBL z = EPoint[Z];
- DBL rdiv;
-
- /* Make sure this vector is on the unit sphere. */
-
- len = sqrt(x * x + y * y + z * z);
-
- if (len == 0.0)
- {
- return 0;
- }
- else
- {
- rdiv = (1.0 / len);
- x *= rdiv;
- y *= rdiv;
- z *= rdiv;
- /*
- x /= len;
- y /= len;
- z /= len;
- */
- }
-
- /* Determine its angle from the x-z plane. */
-
- phi = 0.5 + asin(y) / M_PI; /* This will be from 0 to 1 */
-
-
- /* Determine its angle from the point (1, 0, 0) in the x-z plane. */
-
- len = sqrt(x * x + z * z);
-
- if (len == 0.0)
- {
- /* This point is at one of the poles. Any value of xcoord will be ok... */
-
- theta = 0;
- }
- else
- {
- if (z == 0.0)
- {
- if (x > 0)
- {
- theta = 0.0;
- }
- else
- {
- theta = M_PI;
- }
- }
- else
- {
- theta = acos(x / len);
-
- if (z < 0.0)
- {
- theta = 2.0 * M_PI - theta;
- }
- }
-
- theta /= 2.0 * M_PI; /* This will be from 0 to 1 */
- }
-
- *u = (theta * Image->width);
- *v = (phi * Image->height);
-
- return 1;
- }
-
- /*
- * 2-D to 3-D Procedural Texture Mapping of a Bitmapped Image onto an Object:
- *
- * Simplistic planar method of object image projection devised by DKB and AAC.
- *
- * 1. Transform texture in 3-D space if requested. 2. Determine local object 2-d
- * coords from 3-d coords by <X Y Z> triple. 3. Return pixel color value at
- * that position on the 2-d plane of "Image". 3. Map colour value in Image
- * [0..255] to a more normal colour range [0..1].
- */
-
-
-
- /*****************************************************************************
- *
- * FUNCTION
- *
- * INPUT
- *
- * OUTPUT
- *
- * RETURNS
- *
- * AUTHOR
- *
- * DESCRIPTION
- *
- * Return 0 if there is no color at this point (i.e. invisible), return 1 if a
- * good mapping is found.
- *
- * CHANGES
- *
- ******************************************************************************/
-
- static int planar_image_map(EPoint, Image, u, v)
- VECTOR EPoint;
- IMAGE *Image;
- DBL *u, *v;
- {
- DBL x = EPoint[X];
- DBL y = EPoint[Y];
- DBL z = EPoint[Z];
-
- if (Image->Gradient[X] != 0.0)
- {
- if ((Image->Once_Flag) && ((x < 0.0) || (x > 1.0)))
- {
- return 0;
- }
-
- if (Image->Gradient[X] > 0)
- {
- *u = fmod(x * Image->width, Image->width);
- }
- else
- {
- *v = fmod(x * Image->height, Image->height);
- }
- }
-
- if (Image->Gradient[Y] != 0.0)
- {
- if ((Image->Once_Flag) && ((y < 0.0) || (y > 1.0)))
- {
- return 0;
- }
-
- if (Image->Gradient[Y] > 0)
- {
- *u = fmod(y * Image->width, Image->width);
- }
- else
- {
- *v = fmod(y * Image->height, Image->height);
- }
- }
-
- if (Image->Gradient[Z] != 0.0)
- {
- if ((Image->Once_Flag) && ((z < 0.0) || (z > 1.0)))
- {
- return 0;
- }
-
- if (Image->Gradient[Z] > 0)
- {
- *u = fmod(z * Image->width, Image->width);
- }
- else
- {
- *v = fmod(z * Image->height, Image->height);
- }
- }
-
- return 1;
- }
-
-
- /*****************************************************************************
- *
- * FUNCTION
- *
- * map
- *
- * INPUT
- *
- * EPoint -- 3-D point at which function is evaluated
- * TPattern -- Pattern containing various parameters
- *
- * OUTPUT
- *
- * xcoor, ycoor -- 2-D result
- *
- * RETURNS
- *
- * Map returns 1 if point off of map 0 if on map
- *
- * AUTHOR
- *
- * POV-Ray Team
- *
- * DESCRIPTION : Maps a 3-D point to a 2-D point depending upon map type
- *
- * CHANGES
- *
- ******************************************************************************/
-
- static int map(EPoint, TPattern, xcoor, ycoor)
- VECTOR EPoint;
- TPATTERN *TPattern;
- DBL *xcoor, *ycoor;
- {
- IMAGE *Image = TPattern->Vals.Image;
-
- /* Now determine which mapper to use. */
-
- switch (Image->Map_Type)
- {
- case PLANAR_MAP:
-
- if (!planar_image_map(EPoint, Image, xcoor, ycoor))
- {
- return (1);
- }
-
- break;
-
- case SPHERICAL_MAP:
-
- if (!spherical_image_map(EPoint, Image, xcoor, ycoor))
- {
- return (1);
- }
-
- break;
-
- case CYLINDRICAL_MAP:
-
- if (!cylindrical_image_map(EPoint, Image, xcoor, ycoor))
- {
- return (1);
- }
-
- break;
-
- case TORUS_MAP:
-
- if (!torus_image_map(EPoint, Image, xcoor, ycoor))
- {
- return (1);
- }
-
- break;
-
- default:
-
- if (!planar_image_map(EPoint, Image, xcoor, ycoor))
- {
- return (1);
- }
-
- break;
- }
-
- /* Now make sure the point is on the image */
-
- *ycoor += Small_Tolerance;
- *xcoor += Small_Tolerance;
-
- /* Compensate for y coordinates on the images being upsidedown */
-
- *ycoor = (DBL)Image->iheight - *ycoor;
-
- if (*xcoor < 0.0)
- {
- *xcoor += (DBL)Image->iwidth;
- }
- else
- {
- if (*xcoor >= (DBL)Image->iwidth)
- {
- *xcoor -= (DBL)Image->iwidth;
- }
- }
-
- if (*ycoor < 0.0)
- {
- *ycoor += (DBL)Image->iheight;
- }
- else
- {
- if (*ycoor >= (DBL)Image->iheight)
- {
- *ycoor -= (DBL)Image->iheight;
- }
- }
-
- if ((*xcoor >= (DBL)Image->iwidth) ||
- (*ycoor >= (DBL)Image->iheight) ||
- (*xcoor < 0.0) || (*ycoor < 0.0))
- {
- Error("Picture index out of range.");
- }
-
- return (0);
- }
-
-
-
- /*****************************************************************************
- *
- * FUNCTION
- *
- * INPUT
- *
- * OUTPUT
- *
- * RETURNS
- *
- * AUTHOR
- *
- * DESCRIPTION
- *
- * CHANGES
- *
- ******************************************************************************/
-
- static void no_interpolation(Image, xcoor, ycoor, colour, index)
- IMAGE *Image;
- DBL xcoor, ycoor;
- COLOUR colour;
- int *index;
- {
- IMAGE_LINE *line;
- int iycoor, ixcoor;
- IMAGE_COLOUR *map_colour;
-
- if (xcoor < 0.0)
- {
- xcoor += (DBL)Image->iwidth;
- }
- else
- {
- if (xcoor >= (DBL)Image->iwidth)
- {
- xcoor -= (DBL)Image->iwidth;
- }
- }
-
- if (ycoor < 0.0)
- {
- ycoor += (DBL)Image->iheight;
- }
- else
- {
- if (ycoor >= (DBL)Image->iheight)
- {
- ycoor -= (DBL)Image->iheight;
- }
- }
-
- iycoor = (int)ycoor;
- ixcoor = (int)xcoor;
-
- if (Image->Colour_Map == NULL)
- {
- line = &Image->data.rgb_lines[iycoor];
-
- colour[RED] += (DBL)line->red[ixcoor] / 255.0;
- colour[GREEN] += (DBL)line->green[ixcoor] / 255.0;
- colour[BLUE] += (DBL)line->blue[ixcoor] / 255.0;
- if (line->transm != NULL)
- {
- colour[TRANSM] += (DBL)line->transm[ixcoor] / 255.0;
- }
-
- *index = -1;
- }
- else
- {
- *index = Image->data.map_lines[iycoor][ixcoor];
-
- map_colour = &Image->Colour_Map[*index];
-
- colour[RED] += (DBL)map_colour->Red / 255.0;
- colour[GREEN] += (DBL)map_colour->Green / 255.0;
- colour[BLUE] += (DBL)map_colour->Blue / 255.0;
- colour[FILTER] += (DBL)map_colour->Filter / 255.0;
- colour[TRANSM] += (DBL)map_colour->Transmit / 255.0;
- }
- }
-
-
-
- /*****************************************************************************
- *
- * FUNCTION
- *
- * INPUT
- *
- * OUTPUT
- *
- * RETURNS
- *
- * AUTHOR
- *
- * DESCRIPTION
- *
- * CHANGES
- *
- ******************************************************************************/
-
- /* Interpolate color and filter values when mapping */
-
- static void Interp(Image, xcoor, ycoor, colour, index)
- IMAGE *Image;
- DBL xcoor, ycoor;
- COLOUR colour;
- int *index;
- {
- int iycoor, ixcoor, i;
- int Corners_Index[4];
- DBL Index_Crn[4];
- COLOUR Corner_Colour[4];
- DBL Red_Crn[4];
- DBL Green_Crn[4];
- DBL Blue_Crn[4];
- DBL Filter_Crn[4];
- DBL Transm_Crn[4];
- DBL val1, val2, val3, val4, val5;
-
- val1 = val2 = val3 = val4 = val5 = 0.0;
-
- iycoor = (int)ycoor;
- ixcoor = (int)xcoor;
-
- for (i = 0; i < 4; i++)
- {
- Make_ColourA(Corner_Colour[i], 0.0, 0.0, 0.0, 0.0, 0.0);
- }
-
- /* OK, now that you have the corners, what are you going to do with them? */
-
- if (Image->Interpolation_Type == BILINEAR)
- {
- no_interpolation(Image, (DBL)ixcoor + 1, (DBL)iycoor, Corner_Colour[0], &Corners_Index[0]);
- no_interpolation(Image, (DBL)ixcoor, (DBL)iycoor, Corner_Colour[1], &Corners_Index[1]);
- no_interpolation(Image, (DBL)ixcoor + 1, (DBL)iycoor - 1, Corner_Colour[2], &Corners_Index[2]);
- no_interpolation(Image, (DBL)ixcoor, (DBL)iycoor - 1, Corner_Colour[3], &Corners_Index[3]);
-
- for (i = 0; i < 4; i++)
- {
- Red_Crn[i] = Corner_Colour[i][RED];
- Green_Crn[i] = Corner_Colour[i][GREEN];
- Blue_Crn[i] = Corner_Colour[i][BLUE];
- Filter_Crn[i] = Corner_Colour[i][FILTER];
- Transm_Crn[i] = Corner_Colour[i][TRANSM];
-
- /*
- * Debug_Info("Crn %d = %lf %lf
- * %lf\n",i,Red_Crn[i],Blue_Crn[i],Green_Crn[i]);
- */
- }
-
- val1 = bilinear(Red_Crn, xcoor, ycoor);
- val2 = bilinear(Green_Crn, xcoor, ycoor);
- val3 = bilinear(Blue_Crn, xcoor, ycoor);
- val4 = bilinear(Filter_Crn, xcoor, ycoor);
- val5 = bilinear(Transm_Crn, xcoor, ycoor);
- }
-
- if (Image->Interpolation_Type == NORMALIZED_DIST)
- {
- no_interpolation(Image, (DBL)ixcoor, (DBL)iycoor - 1, Corner_Colour[0], &Corners_Index[0]);
- no_interpolation(Image, (DBL)ixcoor + 1, (DBL)iycoor - 1, Corner_Colour[1], &Corners_Index[1]);
- no_interpolation(Image, (DBL)ixcoor, (DBL)iycoor, Corner_Colour[2], &Corners_Index[2]);
- no_interpolation(Image, (DBL)ixcoor + 1, (DBL)iycoor, Corner_Colour[3], &Corners_Index[3]);
-
- for (i = 0; i < 4; i++)
- {
- Red_Crn[i] = Corner_Colour[i][RED];
- Green_Crn[i] = Corner_Colour[i][GREEN];
- Blue_Crn[i] = Corner_Colour[i][BLUE];
- Filter_Crn[i] = Corner_Colour[i][FILTER];
- Transm_Crn[i] = Corner_Colour[i][TRANSM];
-
- /*
- * Debug_Info("Crn %d = %lf %lf
- * %lf\n",i,Red_Crn[i],Blue_Crn[i],Green_Crn[i]);
- */
- }
-
- val1 = norm_dist(Red_Crn, xcoor, ycoor);
- val2 = norm_dist(Green_Crn, xcoor, ycoor);
- val3 = norm_dist(Blue_Crn, xcoor, ycoor);
- val4 = norm_dist(Filter_Crn, xcoor, ycoor);
- val5 = norm_dist(Transm_Crn, xcoor, ycoor);
- }
-
- colour[RED] += val1;
- colour[GREEN] += val2;
- colour[BLUE] += val3;
- colour[FILTER] += val4;
- colour[TRANSM] += val5;
-
- /* Debug_Info("Final = %lf %lf %lf\n",val1,val2,val3); */
- /* use bilinear for index try average later */
-
- for (i = 0; i < 4; i++)
- {
- Index_Crn[i] = (DBL)Corners_Index[i];
- }
-
- if (Image->Interpolation_Type == BILINEAR)
- {
- *index = (int)(bilinear(Index_Crn, xcoor, ycoor) + 0.5);
- }
-
- if (Image->Interpolation_Type == NORMALIZED_DIST)
- {
- *index = (int)(norm_dist(Index_Crn, xcoor, ycoor) + 0.5);
- }
- }
-
-
-
- /*****************************************************************************
- *
- * FUNCTION
- *
- * INPUT
- *
- * OUTPUT
- *
- * RETURNS
- *
- * AUTHOR
- *
- * DESCRIPTION
- *
- * CHANGES
- *
- ******************************************************************************/
-
- /* These interpolation techniques are taken from an article by */
- /* Girish T. Hagan in the C Programmer's Journal V 9 No. 8 */
- /* They were adapted for POV-Ray by CdW */
-
- static DBL bilinear(corners, x, y)
- DBL *corners, x, y;
- {
- DBL p, q;
- DBL val;
-
- p = x - (int)x;
- q = y - (int)y;
-
- if ((p == 0.0) && (q == 0.0))
- {
- return (*corners); /* upper left */
- }
-
- val = (p * q * *corners) + (q * (1 - p) * *(corners + 1)) +
- (p * (1 - q) * *(corners + 2)) + ((1 - p) * (1 - q) * *(corners + 3));
-
- return (val);
- }
-
-
-
-
- /*****************************************************************************
- *
- * FUNCTION
- *
- * INPUT
- *
- * OUTPUT
- *
- * RETURNS
- *
- * AUTHOR
- *
- * DESCRIPTION
- *
- * CHANGES
- *
- ******************************************************************************/
-
- #define MAX_PTS 4
- #define PYTHAGOREAN_SQ(a,b) ( (a)*(a) + (b)*(b) )
-
- static DBL norm_dist(corners, x, y)
- DBL *corners, x, y;
- {
- register int i;
-
- DBL p, q;
- DBL wts[MAX_PTS];
- DBL sum_inv_wts = 0.0;
- DBL sum_I = 0.0;
- DBL rdiv;
-
- p = x - (int)x;
- q = y - (int)y;
-
- if ((p == 0.0) && (q == 0.0))
- {
- return (*corners); /* upper left */
- }
-
- wts[0] = PYTHAGOREAN_SQ(p, q);
- wts[1] = PYTHAGOREAN_SQ(1 - p, q);
- wts[2] = PYTHAGOREAN_SQ(p, 1 - q);
- wts[3] = PYTHAGOREAN_SQ(1 - p, 1 - q);
-
- for (i = 0; i < MAX_PTS; i++)
- {
- rdiv = (1.0 / wts[i]);
- sum_inv_wts += rdiv;
- sum_I += *(corners + i) * rdiv;
- /*
- sum_inv_wts += 1 / wts[i];
- sum_I += *(corners + i) / wts[i];
- */
- }
-
- return (sum_I / sum_inv_wts);
- }
-
-
-
- /*****************************************************************************
- *
- * FUNCTION
- *
- * Create_Image
- *
- * INPUT
- *
- * OUTPUT
- *
- * RETURNS
- *
- * AUTHOR
- *
- * POV-Ray Team
- *
- * DESCRIPTION
- *
- * -
- *
- * CHANGES
- *
- * -
- *
- ******************************************************************************/
-
- IMAGE *Create_Image()
- {
- IMAGE *Image;
-
- Image = (IMAGE *) POV_MALLOC(sizeof(IMAGE), "image file");
-
- Image->References = 1;
-
- Image->File_Type = NO_FILE;
-
- Image->Map_Type = PLANAR_MAP;
-
- Image->Interpolation_Type = NO_INTERPOLATION;
-
- Image->Once_Flag = FALSE;
-
- Image->Use_Colour_Flag = FALSE;
-
- Make_Vector(Image->Gradient, 1.0, -1.0, 0.0);
-
- return (Image);
- }
-
-
-
- /*****************************************************************************
- *
- * FUNCTION
- *
- * Copy_Image
- *
- * INPUT
- *
- * OUTPUT
- *
- * RETURNS
- *
- * AUTHOR
- *
- * POV-Ray Team
- *
- * DESCRIPTION
- *
- * -
- *
- * CHANGES
- *
- * -
- *
- ******************************************************************************/
-
- IMAGE *Copy_Image(Old)
- IMAGE *Old;
- {
- if (Old != NULL)
- {
- Old->References++;
- }
-
- return (Old);
- }
-
-
-
- /*****************************************************************************
- *
- * FUNCTION
- *
- * Destroy_Image
- *
- * INPUT
- *
- * OUTPUT
- *
- * RETURNS
- *
- * AUTHOR
- *
- * POV-Ray Team
- *
- * DESCRIPTION
- *
- * -
- *
- * CHANGES
- *
- * -
- *
- ******************************************************************************/
-
- void Destroy_Image(Image)
- IMAGE *Image;
- {
- int i;
-
- if ((Image == NULL) || (--(Image->References) > 0))
- {
- return;
- }
-
- if (Image->Colour_Map != NULL)
- {
- POV_FREE(Image->Colour_Map);
-
- Image->Colour_Map = NULL;
-
- if (Image->data.map_lines != NULL)
- {
- for (i = 0; i < Image->iheight; i++)
- {
- POV_FREE(Image->data.map_lines[i]);
- }
-
- POV_FREE(Image->data.map_lines);
-
- Image->data.map_lines = NULL;
- }
- }
- else
- {
- if (Image->data.rgb_lines != NULL)
- {
- for (i = 0; i < Image->iheight; i++)
- {
- POV_FREE(Image->data.rgb_lines[i].red);
- POV_FREE(Image->data.rgb_lines[i].green);
- POV_FREE(Image->data.rgb_lines[i].blue);
-
- if (Image->data.rgb_lines[i].transm != NULL)
- {
- POV_FREE(Image->data.rgb_lines[i].transm);
- }
- }
-
- POV_FREE(Image->data.rgb_lines);
-
- Image->data.rgb_lines = NULL;
- }
- }
-
- POV_FREE(Image);
- }
-